If secθ=absecθ=absecθ=ab and 90∘>θ>0∘,90∘>θ>0∘,90∘>θ>0∘, find value of tanθ.tanθ.tanθ.
Answer:
√a2−b2b2√a2−b2b2√a2−b2b2
- We know that, tanθ=√(sec2θ−1)tanθ=√(sec2θ−1)tanθ=√(sec2θ−1)
- Now replace value of secθsecθsecθ in above equation.
tanθ=√(ab)2−1tanθ=√(ab)2−1tanθ=√(ab)2−1 - Simplify RHSRHSRHS of above equation.
tanθ=√a2−b2b2tanθ=√a2−b2b2tanθ=√a2−b2b2