Solve the following pair of linear equations by the method of cross-multiplication.
ax−by=a+bbx+ay=b−a
Answer:
x=1 and y=−1
- The given pair of equations is ax−by=a+b ⟹ax−by−(a+b)=0bx+ay=b−a ⟹bx+ay−(b−a)=0
- By cross-multiplication, we get x−ba↗↘−(a+b)−(b−a)=−yab↗↘−(a+b)−(b−a)=1ab↗↘−ba⟹x−b×−(b−a)−a×−(a+b)=−y−(b−a)×a+(a+b)×b=1a×a−b×(−b)⟹xb(b−a)+a(a+b)=−y−a(b−a)+b(a+b)=1(a2+b2)⟹xb2−ba+a2+ab=−y−ab+a2+ba+b2=1(a2+b2)⟹x(b2+a2)=−y(b2+a2)=1(a2+b2)⟹x(b2+a2)=1(a2+b2) and −y(b2+a2)=1(a2+b2)⟹x=(b2+a2)(a2+b2) and y=−(b2+a2)(a2+b2)⟹x=1 and y=−1
- Hence, the required solution is x=1 and y=−1.